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Abstract — The paper proposes a hardware and software 

system for the tasks of recognizing physical ground objects in the 

flow of radar frames on the basis of a single-board computing 

module located on a small aircraft. Hardware computing 

modules with neural network processing blocks are analyzed. 

Small-size neural network models for their deployment on the 

hardware-computing module are analyzed and selected. The 

hardware-software system of airborne basing with realization of 

recognition of physical ground objects in the stream of radar 

frames is described. 
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I.  INTRODUCTION 

In recent years, compact Synthetic Aperture Radar (SAR) 
systems have found widespread applications. This trend is 
driven by global progress in science and technology, its 
integration with small aerial vehicles (SAVs). Modern SAVs 
with takeoff mass of several kilograms (from 5 kg) possess 
sufficient payload capacity to carry compact radar systems 
equipped with hardware computing modules [1]. 

Compact SAR systems mounted on SAVs can generate 
high-resolution radar image streams [2]. This imaging method 
remains unaffected by various disruptive factors, including 
temporal and seasonal visibility conditions such as fog, smoke, 
smog, snowfall, or cloud cover. Therefore, the resulting radar 
image provides reliable information about physical ground 
objects (PGOs). This capability enables continuous monitoring 
of man-made and natural emergency situations (ES), across 
challenging Earth surface observation conditions. 

Due to the specific nature of radar image generation, 
specialized approaches capable of automatic PGO recognition 

are required. To enable such continuous monitoring of both 
man-made and natural emergency situations, SAV-based 
systems require neural network models that can automatically 
detect PGOs in generated radar images [3]. 

II. PROBLEM STATEMENT 

Conventional neural network-based approaches often prove 
unsuitable for real-time operation aboard SAVs due to high 
computational demands for radar image processing. This 
necessitates an analysis to establish technical recommendations 
for implementing an hardware computing system capable of 
real-time operation and automated aerial monitoring of ES 
zones. 

 The solution to this problem may involve using compact 
neural network architectures [4], implemented on portable and 
small-sized hardware computing modules (HCMs). The HCM 
foundation is proposed to be based on single-board computers 
using specialized processors designed for high-speed neural 
network execution. This combination of HCMs with 
specifically tailored neural network architectures will enable 
SAVs to achieve the required speed of neural network data 
processing (NNP) that meets soft real-time requirements and 
high accuracy of correctly recognized PGOs in autonomous ES 
zones monitoring mode. 

Thus, to solve the stated problem, the following steps must 
be performed: 

• Conduct an analysis of small-sized hardware HCMs and 
select the most suitable for aviation monitoring 
purposes; 

• Perform an analysis of compact neural network models 
for PGOs recognition in radar image streams and make 



a selection considering processing speed and 
recognition accuracy requirements; 

• Based on the conducted analyses of HCM and neural 
network model selection, formulate recommendations 
for implementing an aviation monitoring system 
capable of recognizing PGOs in radar image streams 
while meeting all the aforementioned requirements. 

III. HARDWARE COMPUTING MODULES ANALYSIS 

AND SELECTION 

To address the task of recognition in radar image streams, it 
is necessary to evaluate small-sized HCMs. The key 
parameters for analysis include the specifications of the 
following HCM components: Central Processing Unit (CPU), 
Graphics Processing Unit (GPU), Neural Processing Unit 
(NPU), Random Access Memory (RAM) capacity and Physical 
dimensions (PD) of HCM.  

For NPUs, their computational performance is measured in 
trillions of operations per second (TOPS). 

Table I presents the most popular HCMs [5-8], especially: 

• Raspberry Pi 5 Model B; 

• Orange Pi 5 Plus; 

• NVIDIA Jetson Nano B; 

• Salute-EL24PM; 

• 'NanoS'/PicoS with digital signal processors (DSPs); 

• 'NanoR'. 

TABLE I. HARDWARE COMPUTING MODULES ANALYSIS 

HCM 

HCM performance parameters 

CPU GPU 
NPU, 

TOPS 

RAM, 

GB 

PD, 

mm 

Raspberr

y Pi 5 

Model B 

4-core Cortex-

A76 (2.4 GHz) 

Broadcom 

VideoCor

e VII 

(OpenGL 

ES 3.1). 

 

 

– 

Up to 

8 GB 

LPDD

R4 

85 x 56 

Orange 

Pi 5 Plus 

8-core (4×A76 

+ 4×A55, up to 

2.4 GHz) 

Mali-

G610 

MP4 

(OpenGL 

ES 3.2, 

Vulkan 

1.2) 

 

 

 

6 

Up to 

32 GB 

LPDD

R4/5 

100х 

75 

NVIDIA 

Jetson 

Nano B 

4-core ARM 

Cortex-A57 

(64-bit) 1.43 

GHz. 

NVIDIA 

Maxwell 

(128 

CUDA-

cores) 

 

 

– 

4 GB 

LPDD

R4 

(25.6 

GB/s) 

69.6 x 

45 

Salute-

EL4PM 

2-core CPU 

Cortex-A9, up 

to 816MHz; 

2-core DSP 

«ELcore-

30M», up to 

672MHz; 

Mali-300 

 

 

2 GB 

LPDD

R3 

 60х60 

NanoS 

1892VA018 

SKIF, 4-core 

ARM Cortex-

A53 up to 2 

GHz additional 

DSP Elcore-50 

– 

1.2 8 GB 

LPDD

R4 

120×12

0 

PicoS 1892VA018 – 1.2 8 GB 100x70 

HCM 

HCM performance parameters 

CPU GPU 
NPU, 

TOPS 

RAM, 

GB 

PD, 

mm 

SKIF, 4-core 

ARM Cortex-

A53 up to 2 

GHz additional 

DSP Elcore-50 

LPDD

R4 

NanoR 

RK3588  

8-core ARM 

Cortex-A76 

Mali-g610 

6 8 GB 

LPDD

R4 

120х12

0 

 

As can be seen from Table 1, for neural network frame 

processing tasks, the following four HCMs stand out: Jetson 

Nano (with support for the parallel computing hardware-

software architecture 'Nvidia CUDA') [9] and Orange Pi 5 

Plus with built-in neural processing blocks. At the same time, 

there is an analogue to the well-known Rockchip processor, 

which is installed on the HCM "NanoS/PicoS" under the name 

«SKIF» [10]. 

1. The 'NVIDIA Jetson Nano' HCM is optimal for neural 

network models due to its 128-core CUDA GPU and 

TensorRT support, enabling real-time frame processing at 15-

20 Hz through YOLO-family model implementations. This 

module's key distinction is its seamless integration with AI 

ecosystems, especially with the 'PyTorch', 'TensorFlow', and 

'OpenCV' libraries, along with CUDA-core optimization 

capability for radar image processing. However, its weak 4-

core CPU (Cortex-A57) may bottleneck high-resolution image 

processing, and its 5W power consumption requires active 

cooling for sustained operation. 

2. The 'Orange Pi 5 Plus' HCM (featuring RK3588 CPU 

and Mali-G610 GPU) stands out with its 8-core CPU (4-core 

Cortex-A76 and 4-core Cortex-A55) and integrated NPU 

delivering up to 6 TOPS. This configuration enables 40 FPS 

processing for optimized neural networks like YOLOv8n. 

However, NPU adaptation via the RKNN-Toolkit library [11] 

requires time, and available documentation poorly addresses 

non-standard input data formats. For stable peak-load 

operation, the module requires up to 20W power draw and 

active cooling for the HCM processor. 

3. The "NanoS" HCM ("Cortex-A53" CPU and "Elcore-

50" DSP) - stands out due to its "Elcore-50" DSP, designed for 

processing image streams in object recognition tasks through 

its ability to perform highly efficient mathematical operations 

in real time. 

4. The "PicoS" HCM is based on a quad-core ARM 

Cortex-A53 processor (up to 2 GHz) with an Elcore-50 

optimized for processing neural network algorithms and 

mathematical operations in real time. The module supports 

Linux operating systems (AltLinux, Red hat, Buildroot) and is 

equipped with MIPI-CSI-2 interfaces. 

5. The "NanoR" HCM (RK3588 CPU and Mali-G610 

GPU) demonstrates similar specifications to the Orange Pi 5 

Plus. The Mali-G610 provides basic graphics processing, and 

the 8-core CPU can handle data preprocessing. However, the 



lack of specialized AI accelerators (NPU/GPU) limits the 

frames per second for neural networks, and the ecosystem 

depends on manufacturer support. 

Based on the analysis, we can conclude that among 

competing solutions, the Rockchip OrangePi 5 Plus-based 

HCM stands out for its fast neural data processing accelerated 

by a dedicated NPU.  

At the same time, HCM based on NVIDIA Jetson Nano 

achieves comparable performance by utilizing CUDA cores 

for parallel computing. 

And among the non-Rockchip-based counterparts, the 

“PicoS” HCM is the optimal solution for recognizing PGOs in 

radar images. Its key advantages include its compact size and 

DSP support that minimizes processing latency and meets the 

requirements of soft real-time operation. 

IV. ANALYSIS AND SELECTION OF NEURAL 

NETWORKS FOR PHYSICAL GROUND OBJECT 

RECOGNITION IN RADAR IMAGE STREAMS ON 

HARDWARE COMPUTING MODULES 

For implementing PGO recognition in radar image streams 
[12] onboard SAVs through HCM deployment, the following 
compact neural network architectures should be considered 
(Fig. 1): 

- MobileNet-SSDLite models of various versions [13]; 
- YOLO-Tiny family models [14]; 
- YOLOv nano version [15, 16]. 

These neural network models are suitable for operation 
under limited computational resources, meaning they can be 
implemented onboard SAVs with 1-2 GB of RAM and low 
processing power while maintaining sufficient recognition 
accuracy of PGOs. The architectures of compact neural 
network models (Fig. 1) with simplified structure (fewer 
layers) are applicable for neural network processing of radar 
images. They are perfectly suited for implementation onboard 
SAVs for the purpose of automatic aviation monitoring of ES 
zones. 

 

Fig.1. Neural Network Architecture 

Table II presents the comparative analysis of neural 
networks (NNs) based on the following key parameters: model 
size (in megabytes, MB), mean accuracy prediction (mAP), 
number of trainable parameters (in millions), floating-point 
operations per second (FLOPS).  

TABLE II.  ANALYSIS OF NEURAL NETWORKS FOR PGO 

RECOGNITION IN RADAR IMAGE STREAMS 

Neural 

Network 

NN performance parameters 

№ 
Model 

Size, MB 

Number of 

Trainable 

Parameters, 

mln 

FLOP

s 

mAP 

MobileNe

t SSDLite 

v1 7 4.2 1.0 0.5 

v2 17 10 1.5 0.7 

v3 19 5.4 1,2 0.71 

YOLO-

Tiny 

v5 13.7 5.1 5.8 0.65 

v7 11 6 6.1 0.72 

YOLO 

nano 

version 

v5n 3.9 1.9 4.5 0.75 

v8n 8 3.2 8.7 0.86 

 

As can be seen from Table 2, the neural network YOLOv8n 
stands out for the given task due to its processing speed and 
mean prediction accuracy of PGOs in radar images on HCMs 
[17-19]. 

 Training such neural network models requires specialized 
datasets of radar images, as real data is often unavailable. The 
open datasets of radar images for training neural network 
models include: Moving and Stationary Target Acquisition and 
Recognition (MSTAR) [20], Mini SAR [21], Spotlight SAR 
[22], FARAD X BAND [23], FARAD KU BAND [24], 
SARDet-100k, OGSOD, SAR-Aircraft, SSDD. 

Therefore, for a PGO recognition system in ES zones, it is 
necessary to prepare a dataset of radar images, annotate them, 
modify the neural network model architecture, and conduct 
experiments to demonstrate the results [25, 26]. 

V. HARDWARE-SOFTWARE SYSTEM FOR PHYSICAL 

GROUND OBJECT RECOGNITION IN RADAR IMAGE 

STREAMS 

Thus, for implementing the aviation monitoring system, it 
is recommended to use the PicoS HCM with a NPU of up to 6 
TOPS. To ensure continuous operation, power is provided 
through a multi-level DC/DC converter that stabilizes 
component voltage [27-29]. For autonomous operation of the 
hardware system, a lithium-polymer battery with a charge 
controller is used, which requires an active cooling system. 

The software part is implemented on the Linux RT 
operating system for processing radar image streams with 
support for Rockchip RKNN and TF-Lite libraries [30, 31]. 

Thus, use of a compact neural network model based on an 
HCM with a built-in NPU block implements an autonomous 
PGO recognition system through the use of the compact 
YOLOv8n neural network, which provides minimal processing 
result display latency, corresponding to soft real-time mode. At 
the same time, the power consumption of the HCM is in the 
range of 5-10 W, which is also feasible onboard SAVs. 



VI. CONCLUSION 

Thus, in this work, compact HCMs were analyzed. For the 
stated task, the 'Orange Pi 5 Plus' HCM with 'RK3588' 
processor was selected, where the built-in NPU block increases 
neural network processing speed up to 6 TOPS, which is 
essential for processing streaming data in real-time mode. 

An analysis of compact neural network models for PGO 
recognition in radar frame streams was conducted, and for the 
selected HCM the YOLOv8n model network was proposed, 
whose advantage over other models is its processing speed of 
streaming images and high proportion of correctly recognized 
PGOs. 

Based on the conducted analyses of hardware computing 
module and neural network model selection, recommendations 
were formulated for implementing an aviation control system 
performing PGO recognition in radar images streams. 
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